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SUMMARY 

In this paper the integrated solution approach, the penalty function approach and the solenoidal approach for 
the ftnite element solution of the stationary Navier-Stokes equations are compared. It is shown that both the 
penalty function approach and the solenoidal approach compare favourably to the integrated solution 
method. For fine meshes the solenoidal approach appears to be the cheapest method. 
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INTRODUCTION 

The stationary two-dimensional Navier-Stokes equations are given by the momentum equations 

- a i j , j + p ( u , u j ) , j = p f i ,  i , j=  1,2 (1) 

ui,i = 0, i = 1,2 (2) 

(3) 
with tj the dynamic viscosity, p the density of the fluid, p the pressure and ui the velocity 
components. 

and the continuity equation 

For a Newtonian fluid the Cauchy stress tensor can be written as 

oij = - pd, + q(ui, j + uj,i) 

Boundary conditions for equations (1) and (2) may be of the following types: 

(a) u, and u, given 
(b) un and cr, or ut and cr, given 
(c) o, and cr, given 

with 

0, = aijnjti = q - + - (2 2)  
and 

(4) 

where n is the outward normal and t the tangential unit vector, along the boundary. 
Along each part of the boundary exactly one of the conditions (a), (b) or (c) must be given. 
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Methods to solve (I), ( 2 )  with boundary conditions (4) numerically are, for example, the stream- 
function-vorticity approach, the stream-function approach and the primitive variables approach.' 

In this paper we shall limit ourselves to the primitive variables approach and consider three 
methods commonly used to solve these equations by the finite element method. 

THE PRIMITIVE VARIABLES APPROACH, INTEGRATED FORMULATION 

In the integrated method equations (l), (2) and (4) are solved by applying the Galerkin method in a 
straightforward way. 

The momentum equations are multiplied by test functions 6ui and the continuity equation by a 
test function 6p ,  and integrated over the domain a. In this way we obtain 

I- I- 

r 
- JR6pui+idx = 0 

The Gauss theorem applied to (5) yields 

We can write 

For a Newtonian fluid we have 

~ ( u i , j  + uj,i)6ui, j dx - 

Hence we obtain 
r r r 

J y(ui, + uj,i)6ui, dx - J p6ui,i dx + J dx 
R R R 

This is the so-called weak formulation of (1)-(4) 
The Galerkin equations are derived from (9) and (10) by substituting the approximations 

and replacing 6ui and 6p by the basis functions & and t+bk, respectively. 
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Figure 1. Element e 

It is well k n o ~ n ~ . ~  that in order to prevent singular matrices and the so-called chequer-board 

Among the successful elements in R2 we mention: 
(i) The quadratic 6-node conforming triangle.7 Velocity components are approximated 

quadratically; the pressure is approximated by piecewise linear polynomials, continuous 
over the element boundaries. This element satisfies the B-B condition. For a proof see 
Reference 8. The number of degrees of freedom in each element is 15. 

(ii) The extended 7 point quadratic triangleg (see Figure 1). The velocity components are 
approximated by a quadratic polynomial plus a so-called 'bubble' third degree term, that is 
zero on the element boundaries. Approximation of the pressure is linear in each element and 
discontinuous over the element boundaries. In this form the number of degrees of freedom in 
each element is 17. However, writing the pressure in the elements as 

modes for the p r e ~ s u r e ~ . ~  the elements must satisfy the so-called Brezzi-Babuska condition.6 

with the subscript c referring to the centroid, the continuity equation (10) can be written 
elementwise as 

(xj-xj,c)u;,idx=O, i =  1,2; j= 1,2 
J e  

With (13) we can eliminate the velocity in the centroid and hence the gradient of the pressure, thus 
reducing the number of degrees of freedom to 13 in each element. 

The quadrilateral counterparts of these elements are the biquadratic 9-node quadrilateral 
element: with velocity components approximated biquadratically and bilinear pressure con- 
tinuous over the element boundaries, and the biquadratic 9-node quadrilateral," with linear 
pressure, discontinuous over the element boundaries. 

All these elements have an accuracy of 0(h3)  for the velocity and 0(h2)  for the pressure. 
One of the main difficulties associated with the integrated solution method is that the pressure 

does not appear in the continuity equation. Hence the system of equations to be solved has the 
following structure: 

Owing to the zeros on the main diagonal, pivoting may be necessary, resulting in a considerable 
increase of computation time and memory required. 
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Therefore one has tried to overcome these difficulties by constrained optimization techniques. In 
the following sections we shall consider two methods that separate the pressure computation from 
the velocity computation, thus avoiding the necessity of pivoting. These methods must be 
considered as efficient solvers for the system of equations (14) and hence must be applied only to 
elements satisfying the BB condition. 

THE PENALTY FUNCTION APPROACH 

One of the oldest methods to separate the pressure and velocity computation is the penalty 
function approach.' ' The method is based on techniques from constrained optimization' and the 
observation that the Navier-Stokes equations in the absence of convective terms can be 
formulated as a minimization p r ~ b l e m . ~  

The idea is to replace the continuity equation (2) by a perturbed equation: 

Ep - Ui,i = 0 (15) 

and then to apply the Galerkin method, resulting in 

With (16) we can express the pressure in terms of the velocity and thus eliminate it from (9). 
Using the notation of equation (14), the resulting system of equations can be formulated as 

(17) 

js(u)+ELTM-'L 1 

1 
p = -M-'Lu 

For the Stokes equations one can prove13 the convergence of the method as 8 4 0 .  Practical 
computations have shown that the method works for the Navier-Stokes equations as well. In 
practice E should be chosen in the range to top9 depending on the accuracy of the computer 
used. 

The penalty method requires the computation of the matrix (l/E)LTM-'L, which for the 
discontinuous pressure elements (iii) and (iv) can be carried out elementwise. Moreover for the 
continuous pressure elements (i) and (ii) the structure of the matrix (l/E)LTM-'L differs from the 
structure of S (larger bandwidth), and hence in general the penalty function approach is combined 
only with discontinuous pressure elements. 

Computations have shown that the penalty function method can be 5 to 10 times faster than the 
integrated formulation. A disadvantage is the parameter E, which for small values causes loss of 
accuracy and sometimes for too large values prevents convergence to the solution of system (14). 
Furthermore, the condition number of the system of equations (17) is large, since the matrix 
LTM-'L is singular and E small. Therefore this system cannot be solved by iterative matrix 
techniques. 

An alternative form of the penalty function approach is to substitute the perturbed equation (15) 
into the Navier-Stokes equations (1) and (3), thus eliminating the pressure from the differential 
equations. In this way the perturbed Navier-Stokes equations can be written as 

E 

- gi, j + duiuj), j = ~ f i  

0.. =: - - u .  .a,.+ y(u. . + u .  .) 

(18) 

(19) 
1 

l3 E I , '  lJ 
1.3 3.1 
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Application of the standard Galerkin method to equations (18) and (19) results in the following 
weak formulation: 

j n ~ ( u i , j  + uj,i)8ui,jdx + 

Since in (20) no pressure terms are present, it seems as if (20) can be solved with any element even if it 
does not satisfy the B-B condition. However, computations have shown that the solution of (20) 
with most finite elements, suffers from chequerboard modes for the pressure when the penalty term 
(involving l/e) is integrated exactly. Most authors suggest the use of reduced integration for this 
term (see for example Reference 14) in order to suppress the spurious pressure modes. It is easy to 
see that exact integration results in spurious pressure modes, since for small values of E, (20) is 
equivalent to the solution of (9) under the constraint 

jQ 6uj, jui, dx = 0 (21) 

Hence the divergence of the velocity plays the role of the pressure. Now the divergence of the 
discretized velocity is discontinuous, and it is well known that discontinuous pressure elements 
with interpolation polynomials of the same degree for the pressure as for the divergence of the 
velocity do not satisfy the B-B condition. For example in the extended quadratic triangle the 
pressure must be linear, whereas the divergence of the velocity is linear plus some extra quadratic 
term. In fact reduced integration forces the divergence of the velocity to a lower degree term. From 
a practical point of view the penalty formulation (16, 17) is therefore preferred to the continuous 
formulation (20). In the penalty formulation the B-B condition is satisfied, whenever the original 
mixed interpolation element satisfies this condition. 

SOLENOIDAL ELEMENTS 

A more recent development is the construction of approximately divergence-free basis functions.' 
These basis functions are constructed so that they satisfy equation (10) exactly in the Galerkin 
sense, i.e. 

- jQ 8phu!, dx = 0 

Since the basis functions are divergence-free the term 

J , ph8u&dx 
n 

in (9) is zero, and hence the pressure drops out from the momentum equations. 
Divergence-free basis functions have only been constructed for discontinuous pressure elements. 

Here we give the derivation for the extended quadratic triangle; the 9-point biquadratic 
quadrilateral can be treated in the same way. 

After elimination of the centroid by (13) the continuity equation (10) reduces in each element e to 
(12): 

dx = 6. uh*n ds = 0 (23) 
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Figure 2. Element e 

In order to construct a vector field with normal velocity components satisfying (23) a stream 
function $h is introduced according to 

Since uh*n = V$"t, for each side of the element we have (cf, Figure 2) 

The introduction of a function t,hh by (25) forces the solution to satisfy (23). From (25) we can 
eliminate the normal velocity components at the midpoints of the sides and express them in terms 
of the stream function and other velocity components. 

Figure 3 shows the effect of the introduction of the divergence-free basis functions. 
Compared to the penalty function method the number of unknowns is not reduced per element. 

However, since the number of vertices is much smaller than the number of midpoints of sides, the 
total number of degrees of freedom is decreased. 

For the practical implementation of the solenoidal approach we do not actually construct the 
divergence-free basis functions but express the new unknowns in terms of the old ones with the 
aid of a transformation matrix R such that 

u=RB (26) 

with u the vector of velocity components in all nodal points before transformation and B the vector 
of the new degrees offreedom, that is B contains the velocity components and the stream function in 
the vertices and the tangential components at the midpoints of the sides of the elements. 

elimination 
___31 

f 

divergence free element 
original element 

Figure 3. Original element: 1 pressure, 12 velocity components. Divergence free element: no pressure, 2 velocity 
components at vertices, tangential velocity components a t  midpoints of sides and stream-function unknowns at vertices 
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The matrix R is easily constructed elementwise from equations (25) and (13) and is such that 

LRCI = 0 for each vector CI 
Hence LR = 0. 

Equation (14) then reduces to 

RTS(u)RCI = RTf 

For a more detailed discussion see Reference 15. 
It is important that the method can be carried out at element level using a standard element code, 

since it is sufficient to construct element matrices ReTSeRe and element vectors ReTfe, where s" and 
f" are the classical element matrices and vectors for the Navier-Stokes equations. 

Computation of the pressure 

The pressure can be computed by substituting the eliminated basis functions for the test 
functions 6ui in the momentum equations (9). 

Substitution of the 'bubble' function results in an expression for Vp, that can be computed 
elementwise when the velocity and the pressure in the centroid are known. Substitution of the basis 
functions corresponding to the normal velocity components at the midpoints results in a relation 
between the pressures in the centroids of adjacent elements." Hence, given the pressure in one 
element, it can be computed in all other elements by searching adjacent elements. 

Once the pressure and its gradients are computed in each element they must be computed at the 
vertices of the elements. An averaging procedure must be used, since the pressure is discontinuous 
and hence has different values in different elements at the same nodal point. 

Boundary conditions 

The boundary conditions for the velocities must be transformed into boundary conditions for 
the new degrees of freedom, i.e. velocities and stream function. It is not possible to transform the 
boundary conditions at element level because the matrix Re in (26): ue = Reue is singular, which can 
be easily verified by addition of equations (25) for one element. The singularity of this matrix is in 
agreement with the fact that the stream function is not unique. 

For the transformation of velocities to stream-function variables, equation (25) can be used. 
Since the stream function is fixed except for an additive constant we can prescribe the stream 
function at one point of the boundary. Equation (25) can be used as long as the normal components 
of the velocities are given along the boundary. When the normal components are given except for 
one closed part of the boundary (for example an outflow part), we let the stream function be free 
along that part. 

A more difficult situation arises when the normal components are given except for more than one 
(disjoint) part of the boundary, for example when we have an obstacle in the flow (Figure 4). 

In that case we have the boundary conditions t,b = c with can unknown constant. For example in 
Figure 4 such a boundary condition is given along Ts. 

The following method may be used to incorporate the boundary condition t,b = constant in an 
easy way in existing codes. 

The boundary condition = constant along a side r can be considered as the solution of the 
equation 
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Figure 4. Flow around an obstacle 

with boundary conditions 

d$ w --(so) = -(SJ = 0 
ds ds 

with so the starting and s, the endpoint of r, and s the direction along r. 
Equation (29) can easily be solved using simple line elements for the Laplace equation. The 

boundary conditions are natural boundary conditions for this problem. If we add these line 
elements and multiply them by a large number (for example lo4 to lo9) we force the solution to 
satisfy the condition that Ic, is constant. In fact we have used a penalty function method to satisfy the 
boundary conditions. 

LINEARIZATION OF THE CONVECTIVE TERMS 

In order to solve the Galerkin equations it is necessary to linearize the convective terms. Well- 
known linearization methods are, for example, Picard iteration (successive substitution), Newton 
linearization and quasi-Newton methods. Picard iteration is known to converge slowly with a 
linear convergence speed. The convergence of the Newton process is quadratic as soon as an 
iteration is in the neighbourhood of the solution. However, Newton is very sensitive to the initial 
guess; an inaccurate starting value may cause divergence of the iteration process. One of the 
methods to overcome this difficulty is to use a so-called continuation process, for example start 
with a low Reynolds number and increase the Reynolds number during the iteration process. 
Although Newton converges very fast (usually 5 to 10 iterations are sufficient) it requires the 
building of Jacobian matrices and the solution of linear systems of equations in each iteration step. 
Quasi Newton methods, using the Broyden update16 as described by Engelman et aLi7 require the 
computation of Jacobian matrices only once in, for example, 5 steps. Their slower convergence 
behaviour (super-linearly) is regained by the fact that fewer Jacobian matrices have to be computed 
and fewer linear systems of equations have to be solved. Hence a good solution strategy seems to 
be: start with one Picard iteration as initial guess, and continue with the quasi-Newton methods. 

The general approach to compute the Jacobian matrix is to discretize the Galerkin equations 
and to compute the partial derivatives of these discretized equations. However, a simpler way to 
derive the Jacobian matrix is to linearize the equations before application of the Galerkin method. 
The results of both methods are identical. 

Let u; be the result of the preceding iteration. Then the convective terms as, for example (uiuj)r,? I ,  

are linearized in the following way: 
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Equation (31) can be derived by substituting ur+ = ur + Au; and neglecting quadratic terms in the 
correction AM;. 

COMPARISON OF THE THREE METHODS 

Considering the integrated solution method and comparing it with the segregated solution 
methods of discussed earlier we conclude that the last two are much more attractive, mainly 
because of the considerable savings in computing time and computer memory. Therefore we have 
limited ourselves to a comparison of the penalty function method and the solenoidal approach. 

Arlvantuges of the penalty function method 

(i) The method is easily implemented; the computation of the pressure is straightforward. 
(ii) The method can be extended without difficulty to three-dimensional problems. 

Disadvantages of the penalty function method 

(i) In some cases the value of E may cause problems, however in general the range in which E may 

(ii) Iterative solution methods to solve the linear systems of equations are not applicable 
be chosen is large. 

because of the ill-condition due to the smallness of E. 

Advantages of the solenoidal approach 

(i) The number of degrees of freedom is decreased, and hence the computing time and the 
required memory to solve the system of equations. However, the building of matrices and 
vectors requires more computing time, owing to the multiplications with the transform- 
ation matrices. 

(ii) Since no special parameter has to be chosen, the resulting system ofequations can be solved 
by iterative methods. Of course the boundary condition that $ is constant has to be treated 
differently in that case. 

Disadvantages of the solenoidal approach 

(i) The implementation of the method is more complicated, since the boundary conditions must 
be transformed, the computed solution must be transformed back into the original variables, 

Figure 5. Backward facing step 
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and also because the computation of the pressure requires a searching method for 
neighbouring elements. 

(ii) The extension to three dimensions is not straightforward (except for axisymmetric cases). In 
Reference 18 some computations with solenoidal elements in R3 are reported and also 
GriEths3 treats a way to solve this problem. 

PRACTICAL COMPARISON 

In order to make comparisons for a practical problem we have computed the solution of the flow 
over a backward facing step with both methods. Figure 5 gives the definition of the problem. 

The Reynolds number Re is defined as Re = Umaxh/v with v the kinematic viscosity. The 
computations were performed for Re = 150, with boundary conditions: 

fixed walls 
inlet :given velocity profile 
outlet 

:no-slip u = 0 

:u, = 0 and c,, = 0 

In Figure 6 the streamlines, in Figure 7 the pressure contours and in Figure 8 an enlargement of the 
streamlines in the recirculation zone are given. 

In Table I we give comparisons of the computing time to build the matrix and to solve the system 
ofequations for one iteration. Furthermore the number of elements in the large matrix is given. The 
problem is solved with a profile method and took 5 Newton iterations to get a difference between 
two succeeding iterations of less than 10-’.The extended quadratic triangle is used. These numbers 
show that the time to build the matrix is larger for the solenoidal approach, but the time to solve the 
system of equations for one iteration is considerably shorter. For coarse meshes the total 
computing time is comparable, since the building of the matrix takes as much time as the solution 
of the equations. For fine meshes however the solenoidal method is 25 per cent cheaper than the 
penalty function method. 

Table I. Comparison of the penalty function method and the divergence free elements for 4 meshes. 

Divergence free elements 
Number Length CPU 

Mesh of degrees of 1 iter 
number of freedom matrix matrix 

1 179 2960 0.40 
2 619 23,734 1.65 
3 2291 190,718 6.87 
4 2435 217,408 7.38 

CPU 
1 iter 

SOLVE 

0.09 
1.43 

21.10 
25.50 

Penalty function method 
Number of Length CPU 

degrees of 1 iter 
of freedom matrix matrix 

222 4437 0.33 
794 34,237 1.37 

2994 265,949 5.60 
3186 302,565 6.02 

CPU 
1 iter 

SOLVE 

0.16 
2.27 

30.45 
36.55 
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